
Digital Object Identifier (DOI) 10.1140/epjc/s2003-01174-8
Eur. Phys. J. C 28, 483–493 (2003) THE EUROPEAN

PHYSICAL JOURNAL C

QCD saturation and γ∗–γ∗ scattering

M. Kozlov1,a, E. Levin1,2,b

1 HEP Department, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science,
Tel Aviv University, Tel Aviv, 69978, Israel

2 DESY Theory Group, 22603, Hamburg, Germany

Received: 22 November 2002 / Revised version: 27 January 2003 /
Published online: 5 May 2003 – c© Springer-Verlag / Società Italiana di Fisica 2003

Abstract. Two photon collisions at high energy have an important theoretical advantage: the simplicity of
the initial state, which gives us a unique opportunity to calculate these processes for large virtualities of
both photons in the perturbative QCD approach. In this paper we study QCD saturation in two photon
collisions in the framework of the Glauber–Mueller approach. The Glauber–Mueller formula is derived
emphasising the impact parameter dependence (bt) of the dipole–dipole amplitude. It is shown that non-
perturbative QCD contributions are needed to describe the large bt behaviour, and the way how to deal with
them is suggested. Our approach can be viewed as the model for the saturation in which the entire impact
parameter dependence is determined by the initial conditions. The unitarity bound for the total cross
section, its energy dependence as well as predictions for future experiments are discussed. It is argued that
the total cross section increases faster than any power of ln(1/x) in a wide range of energy or x, namely
σ(γ∗–γ∗) ∝ (1/Q2) exp(a

√
ln(1/x)) ≤ 1/m2

π, where exp(a
√

ln(1/x)) reflects the x dependence of the
gluon density xG ∝ exp(2 a

√
ln(1/x)) and mπ is the pion mass.

1 Introduction

Two photon collisions at high energy have three theoret-
ical advantages over hadronic collisions and/or deep in-
elastic scattering.
(1) The simplicity of the initial state, which allows pro-
cesses, such as large transverse momentum hadronic jet
production, to be calculated exactly to lowest order in
perturbative theory. With the advent of high quality ex-
perimental data, theoretical analyses also focus on higher
order corrections to the basic processes which can provide
an interesting test of the theory [1].
(2) Scattering of two photons with large but equal virtu-
alities gives unique access to BFKL emission [2], making
this process very useful for studying the dynamics [3–9].
(3) Scattering of two virtual photons with large virtualities
allows one to study shadowing (screening) corrections on
the solid theoretical basis of perturbative QCD [10].

It is well known that the correct degrees of freedom at
high energy are not quarks or gluons but colour dipoles
[11–14] which have transverse sizes rt and a fraction of
energy x. Therefore, two photon interactions occur in two
successive steps. First, each of the virtual photons decays
into a colour dipole (quark–antiquark pair) with size rt.
At large values of the virtualities the probability of such a
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decay can be calculated in pQCD. The second stage is the
interaction of colour dipoles with each other. The simple
formula (see for example [15]) that describes the process
of the interaction of two photons with virtualities Q1 and
Q2 is (see Fig. 1)

σ(Q1, Q2, W )

=
∫

d2bt

Nf∑
a,b

∫ 1

0
d z1

∫
d2dr1,t|Ψa

T,L(Q1; z1, r1,t)|2

×
∫ 1

0
d z2

∫
d2dr2,t|Ψ b

T,L(Q2; z2, r2,t)|2

×σdd
a,b(x̃ab, r1,t, r2,t; bt), (1.1)

where the indices a and b specify the flavours of the in-
teracting quarks, and T and L indicate the polarization of
the interacting photons. The ri denote the transverse sep-
aration between quark and antiquark in the dipole (dipole
size) and zi are the energy fractions of the quark in the
photon i. σdd

ab = 2N((x̃ab, r1,t, r2,t; bt), where N is the
imaginary part of the dipole–dipole amplitude at energy
x given by

x̃ab =
Q2

1 + Q2
2 + 4 m2

a + 4 m2
b

W 2 + Q2
1 + Q2

2
, (1.2)

where ma is the mass of the quark with flavour a. bt is the
impact parameter for the dipole–dipole interaction and
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Fig. 1. The picture of the interaction of two photons with
virtualities Q1 and Q2 larger than a “soft” scale

it is equal to the transverse distance between the dipole
centers of mass. It is clear that σdd

ab has the meaning of
dσ/d2bt.

The wave functions for virtual photons are known [16];
they are given by

|Ψa
T(Q; z, rt)|2 =

6αem

π2 Z2
a

(
(z2 + (1 − z)2) Q̄2

a K2
1 (Q̄a rt)

+ m2
a K2

0 (Q̄a rt)
)

(1.3)

|Ψa
L(Q; z, rt)|2 =

6αem

π2 Z2
a Q2 z2 (1 − z)2K2

0 (Q̄a rt) , (1.4)

with Q̄2
a = z(1 − z)Q2 + m2

a, where Za and ma denote
the fraction of charge and mass of the quark of flavour a.

The main contribution in (1.1) is concentrated at r1,t
≈ 1/Q1 � 1/µ and r1,t ≈ 1/Q2 � 1/µ, where µ is
the soft mass scale. Therefore, at first sight, we can safely
use pQCD for the calculation of the dipole–dipole cross
section σ in (1.1). The objective of this paper is to inves-
tigate the dipole–dipole cross section at high energy (low
x) where QCD saturation is expected [17–19]. The first
analysis based on the Golec–Biernat and Wüsthoff model
[20] has been performed in [10]. Here we will extend this
analysis by using the Glauber–Mueller approach [11–13]
with special focus on the impact parameter dependence
which was completely omitted in the GBW model as well
as in [10].

In the next section we discuss the dipole–dipole inter-
action in the Born approximation of pQCD. We show that
this approximation leads to σ which decreases as a power
of bt. It turns out that σ → 1/b4

t for large bt > r1,t
and r2,t. Of course, such a behaviour will not change its
character in higher orders of pQCD [21–24] since it is a
direct consequence of the massless gluon in QCD. Using
the Born approximation as an example we consider the
non-perturbative contribution that provides an exponen-
tial decrease at large values of bt > 1/mπ.

Section 3 is devoted to the Glauber–Mueller formula
in the case of the DGLAP emission [25]. Here, we use the
advantage of photon–photon scattering with large pho-
ton virtualities, since we can calculate the gluon density
without uncertainties related to non-perturbative initial
distributions in the hadronic target. It is well known that
no bt dependence is induced by DGLAP emission at least

for large values of the impact parameter. Therefore, the
entire impact parameter dependence is due to the Born
approximation cross section. In other words, we can use
our approach as an explicit illustration of the point of view
that the non-perturbative large bt ≥ 1/2mπ, where mπ

is the pion mass, is determined by the initial condition
[29,30] in contrast with the notion that such a behaviour
could change the kernel of the non-linear equation that
governs the evolution in the saturation region [21–24].

The unitarity bounds as well as the different regimes
of the energy behaviour of two photon total cross sections
are considered in Sect. 4.

In Sect. 5 we give our estimates for the values of the
total cross sections for the accessible range of energy.

In the last section we summarize our results.

2 Dipole–dipole interaction
in the Born approximation

The Born approximation for the dipole–dipole scattering
amplitude is shown in Fig. 2.

To obtain the expression for σdd(x̃, r1,t, r2,tt; bt) (see
Fig. 1) we need to calculate the diagrams in the momen-
tum representation and than to rewrite them in space-
time representations. The conjugated variables to pt and
lt will have the size of the dipole ( say r1,t and the im-
pact parameter bt. The detailed calculation performed by
the light-cone technique (see for example [26]) has been
performed in [27]. The answer is

σ(x̃, r1,t, r2,t; bt) = πα2
S
N2

c − 1
2 N2

c

(2.5)

×
(

ln
(�b − z1�r1 − z2�r2)2 (�b − z̄1�r1 − z̄2�r2)2

(�b − z̄1�r1 − z2�r2)2 (�b − z1�r1 − z̄2�r2)2

)2

,

where zi is the fraction of the energy of the dipole car-
ried by the quarks and z̄i = zi − 1. All vectors are two
dimensional in (2.5).

Equation (2.5) has a simpler form if we assume that
zi = 1/2. Namely,

σ(x̃, r1,t, r2,t; bt) = πα2
S
N2

c − 1
2 N2

c

×
(

ln
(�b + �R)2 (�b − �R)2

(�b + �Σ)2 (�b − �Σ)2

)2

, (2.6)

where �R = �r1,t − �r2,t
2 and �Σ = �r1,t +�r2,t

2 . We note that we
do not find the dipole–dipole cross section in the impact
parameter representation in [27], but the calculation is so
simple that we just present the answer.

To simplify our further calculations we restrict our-
selves by DGLAP emission assuming that r1,t is much
smaller than r2,t. It is instructive to find two different
limits in (2.5).
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Fig. 2. The Born approximation
for dipole–dipole scattering ampli-
tude

(1) bt � r2,t � r1,t. Expanding (2.5) one can obtain
after integration over the azimuthal angle

σ(x̃, r1,t, r2,t; bt) → πα2
S
N2

c − 1
N2

c

r2
1,t r2

2,t

b4
t

. (2.7)

(2) bt � r1,t � r2,t. We have

σ(x̃, r1,t, r2,t; bt) → πα2
S
N2

c − 1
N2

c

r2
1,t r2

2,t

z2
2 z̄2

2 r4
2,t

. (2.8)

(3) Therefore, we can suggest a simple formula which cov-
ers two these limits, namely

σ(x̃, r1,t, r2,t; bt) = πα2
S
N2

c − 1
N2

c

r2
1,t r2

2,t

( b2
t + z2 z̄2 r2

2,t )2
. (2.9)

For further estimates we will use (2.9) which reflects all
qualitative features of the full expression of (2.5) but con-
siderably simplifies the calculations.

Equation (2.5) as well as (2.9) leads to a power-like
decrease at large values of bt, namely, σ(x̃, r1,t, r2,t; bt) ∝
1/b4

t . Such a behaviour cannot be correct since it contra-
dicts the general consequence of analyticity and crossing
symmetry of the scattering amplitude. Since the spectrum
of hadrons has no particles with mass zero, the scatter-
ing amplitude should decrease as e−2mπ bt [28]. Certainly
we need to take into account non-perturbative corrections
to heal this problem, as has been noticed in many papers
[29,21–24,30]. We suggest the procedure how to introduce
such corrections which is based on the hadron–parton du-
ality in the spirit of the QCD sum rules [31]. This proce-
dure consists of two steps:
(i) first, we rewrite (2.9) in the momentum transfer rep-
resentation (t = −q2

t ) in the form of a dispersion relation
with respect to the mass of two gluons in the t-channel;
(ii) secondly, we claim that this dispersion integral gives
the correct contribution of all hadronic states on average.
Therefore, the model for the non-perturbative contribu-
tion is the integral over a two gluon state in the t-channel
but with the restriction that the two gluon mass should be
larger than the minimum mass in hadronic states, namely,

larger than 2mπ. As in QCD sum rules [31] we assume
that the integrand at large mass of the two gluon state
can be found in perturbative QCD, while for small mass
we have to include the realistic (experimental) spectrum of
hadrons. The integration from 2mπ means that we believe
that we can approximate the dispersion integral even in
the region of small masses by the perturbative QCD con-
tribution. This procedure corresponds to the approxima-
tion that has been used in [30]. We can also evaluate this
integral differently: taking into account the first resonance
(glueball) explicitly and to use the pQCD approach to es-
timate the dispersion integral for masses larger than s0,
the value for s0 can be taken from a QCD sum rules cal-
culation of the glueball spectrum [31]. Such an approach
is closely related to the one developed in [29], and it ap-
pears reasonable in pure gluodynamics where we do not
have any pions.

Rewriting (2.9) in the form

σ(x̃, r1,t, r2,t; bt) =
C(r1,t, r2,t)
( b2

t + a2 )2
, (2.10)

with obvious notation, we can see that

σ(x̃, r1,t, r2,t; q2) = C(r1,t, r2,t)
∫

btdbt
J0(b q)

( b2
t + a2 )2

= C(r1,t, r2,t)
q

2a
K1(a q), (2.11)

where J0 and K1 are Bessel and McDonald functions re-
spectively. However, we can rewrite K1(a q) in a different
way as

q K1(a q) =
∫

J1(κ a) κ2 d κ

κ2 + q2 . (2.12)

The last integral, (2.12), gives the dispersion relation,
namely,
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Born approximation One parton shower
(DGLAP emission)

Many parton showers

(Glauber - Mueller formula)

Fig. 3. The Glauber–Mueller ap-
proach for dipole–dipole scattering
amplitude

σ(x̃, r1,t, r2,t; t = −q2)

= C(r1,t, r2,t)
1
2a

∫ ∞

0

J1(κ a) κ2 dκ

κ2 − t
; (2.13)

we replace (2.13) by

σ(x̃, r1,t, r2,t; t = −q2)

= C(r1,t, r2,t)
1
2a

∫ ∞

2 mπ)

J1(κ a) κ2 dκ

κ2 − t
, (2.14)

in accordance with our main idea. Returning to the impact
parameter representation we obtain

σ(x̃, r1,t, r2,t; bt)

= C(r1,t, r2,t)
1
2a

∫ ∞

2 mπ

κ2 dκ

∫ ∞

0
q dq

J1(κ a) J0(q bt)
κ2 + q2

= πα2
S
N2

c − 1
2 N2

c

r2
1,t r2

2,t

× 1√
z2 z̄2 r2,t

∫ ∞

2 mπ

κ2 dκ J1(κ a) K0(κ bt) . (2.15)

One can see that σ ∝ e−2 mπ bt for bt � 1/2 mπ due
to the asymptotic behaviour of the McDonald function
K1(κ bt) → e−2 mπ bt at large bt.

Therefore, the bt behaviour is: for 1/(2 mπ) > bt >
r1,t and/or r2,t the dipole–dipole scattering amplitude falls
as 1/b4

t , but for large bt (bt > 1/(2mπ)) we have a normal
exponential decrease: e−2 mπ bt , which has a non-perturba-
tive origin. Equation (2.15) gives us a rather general way
to take into account the non-perturbative contribution,
since in this equation we explicitly introduce the mini-
mum mass in the experimental hadronic spectrum. How-
ever, as we have mentioned above, we can expect a large
mass for the low limit of integration in the dispersion re-
lation of (2.14) and (2.15) (Q̃0 > mπ) which will lead to
a σ(x̃, r1,t, r2,t; bt) behaviour ∝ e−Q̃0 bt .

3 Glauber–Mueller formula

The Glauber–Mueller approach takes into account the in-
teraction of many parton showers with the target as it is
shown in Fig. 3. Actually this formula was suggested in
[13,12] but Mueller [11] was the first who proved this for-
mula especially for the gluon parton density. The main
idea of this approach is that colour dipole is the correct
degree of freedom for high energy scattering1. Indeed, the

1 This idea was formulated by Mueller in [14] a bit later.

change of the value of the dipole size rt (∆rt) during the
passage of the colour dipole through the target is propor-
tional to the number of rescatterings (or the size of the
target R) multiplied by the angle kt/E where E is the
energy of the dipole and kt is the transverse momentum
of the t-channel gluon which is emitted by the fast dipole.
We have

∆ rt ∝ R
kt

E
. (3.16)

Since kt and rt are conjugate variables and due to the
uncertainty principle

kt ∝ 1
rt

.

Therefore,

∆ rt ∝ R
kt

E
� rt if R � r2

t E or x � 1
2m R

. (3.17)

3.1 DGLAP emission

We first discuss the generalization of the Born approxima-
tion to include the DGLAP emission (see Fig. 3). This will
give us the correct description of the one parton shower
interaction. The DGLAP equation looks very simple in
the region of low x, namely,

∂2xG(x, r2
1,t, r

2
2,t)

∂ ln(1/x) ∂ ln(1/r2
1,t)

=
Nc

π
αS(r2

1,t) xG(x, r2
1,t, r

2
2,t) , (3.18)

where we consider r1,t � r2,t and rewrite the DGLAP
equation in coordinate space. We would like to recall that
the DGLAP evolution equation sums the (αS log Q2)n con-
tribution, and therefore, we can safely rewrite it in the
coordinate representation, since within logarithmic accu-
racy lnQ2 = ln(1/r2

t ). The initial condition for (3.18) is
xG(x = x0, r

2
1,t, r

2
2,t) = 1. This means that the dipole–

dipole cross section at fixed bt for one parton shower in-
teraction has the form (

σdipole(x, r1,t, r2,t; bt)

= σBA
dipole(x, r1,t, r2,t; bt) xG(x, r2

2,t, r
2
2,t) , (3.19)

where σBA
dipole is the Born approximation for the dipole

cross section.
The obvious solution is

xG(x, r2
1,t, r

2
2,t) = I0

(
2
√

ξ(r1,t, r2,t) ln(1/x)
)

, (3.20)
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where

ξ(r1,t, r2,t) =
12 Nc

11 Nc − 2 Nf
ln

ln(4/(r2
1,t Λ2))

ln(4/(r2
2,t Λ2))

.

Here, in the arguments of the running QCD coupling
we have made the simple replacement Q2 → 4/r2

t . Within
log accuracy we cannot guarantee the coefficient 4 in this
expression but as was argued in [34] this is a reasonable
choice (approximation).

Equation (3.20) has the following asymptotic be-
haviour:

xG(x, r2
1,t, r

2
2,t) → e2

√
ξ(r1,t,r2,t) ln(1/x) , (3.21)

which means that xG grows faster than any power of
ln(1/x).

Strictly speaking (3.18) is proven in the so-called dou-
ble log approximation of perturbative QCD, in which we
consider

αS ln(1/x) ln(Q2
1/Q2

2) ≈ 1;
αS ln(1/x) < 1;

αS ln(Q2
1/Q2

2) < 1;
αS � 1. (3.22)

However, we will use this equation in a wider kinematic
region where αS ln(1/x) ln(Q2

1/Q2
2) > 1 and αS ln(1/x) >

1, while αS ln(Q2
1/Q2

2) ≈ 1. In this kinematic region we
should use the BFKL equation [2]. We view (3.18) as the
limit of the BFKL equation in which we take into account
the logarithmic contribution in the transverse momentum
integration in the BFKL kernel. The justification for such
an approach is the fact that the anomalous dimension of
the DGLAP equation can be parameterized in a simple
way [32]:

γ(ω) = αS

(
1
ω

− 1
)

(3.23)

The first term in (3.23) leads to (3.18) in the region of
low x.

Equations (3.19) and (3.20) solve the problem of one
parton shower interaction in the DGLAP evolution. It
should be stressed that the impact parameter dependence
enters only in the Born term in (3.19). The explanation
of this fact is very simple if we recall that the logarithmic
contribution originates from the integration over trans-
verse momenta with large q2/4 where q2 is the momentum
transferred along the DGLAP ladder. Therefore, we have
two choices:

(i) t > Q2
2 and in this case all logs can be summed in a

function with the argument ln(Q2
1/q2),

(ii) t < Q2
2 and in this case we have a function of

ln(Q2
1/Q2

2) as in (3.20). In our problem we are certainly
dealing with the second case since we are mostly interested
in the large bt behaviour of the scattering amplitude which
corresponds to a low q2 behaviour.

3.2 Many parton showers interactions

Since the colour dipoles are correct degrees of freedom
the unitarity constraints are for the dipole–dipole elastic
amplitude ael(x, r1,t, r2,t; bt) are diagonal and they have
the form

2 Imael(x, r1,t, r2,t; bt) (3.24)
≡ σ(x, r1,t, r2,t; bt)

= |ael(x, r1,t, r2,t; bt)|2 + Gin(x, r1,t, r2,t; bt) ,

where Gin stands for the contribution of all inelastic pro-
cesses. Equation (3.24) is exact for dipole–dipole scatter-
ing while it has only a limited accuracy, for example, for
dipole–proton scattering [11]. An experimental manifesta-
tion of the poor accuracy of (3.24) for deep inelastic scat-
tering is the large cross section of the so-called inelastic
diffraction dissociation of proton in an excited state.

Assuming that at high energies the amplitude is pure
imaginary, one can find a simple solution to (3.24), namely,

ael(x, r1,t, r2,t; bt) = i
(

1 − e− Ω(x,r1,t,r2,t;bt)
2

)
; (3.25)

Gin(x, r1,t, r2,t; bt) =
(
1 − e−Ω(x,r1,t,r2,t;bt)

)
, (3.26)

where Ω is the arbitrary real function.
In the Glauber–Mueller approach the opacity Ω is cho-

sen as

Ω(x, r1,t, r2,t; bt)

= σOPS
dipole(x, r1,t, r2,t; bt)

= σBA
dipole(x, r1,t, r2,t; bt) xG(x, r2

1,t, r
2
2,t) , (3.27)

where σOPS
dipole is the dipole–dipole cross section in the one

parton shower approximation (see Fig. 3). One can guess
that the physical interpretation of the Glauber–Mueller
formula is simple, namely, it takes into account many par-
ton shower interactions in dipole–dipole scattering, but
it does not include the possibility for the partons pro-
duced from different parton showers to interact. These in-
teractions lead to a more complicated non-linear evolution
equation [17–19,38]. The influence of non-linear evolution
on the photon–photon scattering will be discussed in a
separate publication; here we restrict ourselves to the con-
sideration of only the first step of this non-linear evolution,
which is the Glauber–Mueller approach.

4 Unitarity bound

Using the Glauber–Mueller formula of (3.25) we can give
the unitarity bound for dipole–dipole scattering as well as
for the γ∗–γ∗ total cross section (see (1.1)). We consider
the Glauber–Mueller formula for the total dipole–dipole
cross section, namely,

σdd
tot = 2

∫
d2 bt

(
1 − e− Ω(x,r1,t,r2,t;bt)

2

)
, (4.28)
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where the opacity Ω is given in (3.27).
The main idea [28] is to replace the full integration

over the impact parameter in the expression for the total
cross section, by integration in two different regions:
(i) the first region is 0 ≤ bt ≤ b0(x), and
(ii) the second one is b0 ≤ bt ≤ ∞. In the first region we
consider Ω/2 > 1 and replace Im ael by 1. On the other
hand, in the second region we assume that Ω/2 < 1 and
expand (3.25) with respect to Ω, restricting ourselves to
the first term of this expansion.

Therefore,

σdd
tot < 2π

(∫ b20

0
db2

t 1 +
∫ ∞

b20

d b2
t

Ω

2

)
. (4.29)

4.1 Case b0 � 1
2 mπ

Let us assume that b0 � 1/2 mπ. In this case we can use
(2.9) (or (2.10)) for the bt-dependence for both intervals.
Taking the integral of (4.29) we have

σdd
tot < 2π

(
b2
0(x) +

C(r1,t, r2,t) xG(x, r2
1,t, r

2
2,t)

2 (b2
0(x) + a2)

)
. (4.30)

We follow Froissart’s idea which is to evaluate the value of
the characteristic impact parameter b0, namely, the value
of b0(x) can be found from the following equation:

Ω(x, r1,t, r2,t; b0(x))
2

= 1 . (4.31)

Indeed, for bt > b0, Ω/2 < 1, the full formula gives less
than the first term of the expansion, while for bt < b0,
Ω/2 > 1, the elastic amplitude for the fixed value of the
impact parameter is less than 1. Using (3.19) we obtain
the solution of (4.31) in the form

b2
0 = −r2

2,t (z2 z̄2)

+
αS

Nc

√
π (N2

c − 1)
2

r1,t r2,t

×
√

I0

(
2
√

ξ(r1,t r1,t) ln(1/x)
)

; (4.32)

see (3.20) for the notation.

One can see that (4.32) leads to b2
0 →e

√
ξ(r1,t r1,t) ln(1/x)

at x → 0, which means that b0(x) increases faster than
any power of ln(1/x).

One can see that b2
0 becomes negative at rather large

values of x. It reflects the fact that (4.31) does not have a
solution at all values of x. In other words, Ω/2 < 1 even
at bt = 0 for low energies. However, it should be stressed
that (4.31) does have a solution at high energies which we
are actually dealing with in this paper.

Substituting (4.32) into (4.29) we obtain

σdd
tot < 2π

(
2 b2

0(x) + r2
2,t (z2 z̄2)

)
(4.33)

with b0 of (4.32). Equation (4.32) is in striking contradic-
tion with the Froissart theorem which states that σdd

tot �
ln2(1/x) (see [33] for more details on the Froissart theorem
for the photon interaction).

4.2 Case b0 � 1
2 mπ

In this case for bt > b0 > 1
2 mπ

the integral over κ in
(2.15) is concentrated at κ → 2 mπ with κ−2 mπ ≈ 1/bt.
Since 2 mπ a � 1 we expand the J1 function, namely
J1(κ a) = 1

2 κ a. Since we are interested only in the large
bt behaviour of the opacity Ω (b0 � 1

2 mπ
) we replace κ2

under the integral by (2mπ)2. The use of the asymptotic
behaviour of McDonald’s function as well as the simplifi-
cation, mentioned above, leads to the overall accuracy 1/bt
in the pre-exponential factor, which is enough to obtain
the unitarity bound. It is worthwhile mentioning that in
our numerical calculation the integral of (2.15) was com-
puted without any approximation.

Finally we have the following estimate2 for the integral
of (2.15)

σBA
dipole (4.34)

= π α2
S

N2
c − 1
4 N2

c

( r2
1,t r2

2,t )(2 mπ)2
∫ ∞

2 mπ

κ d κ K0(κ bt)

= π α2
S

N2
c − 1
4 N2

c

( r2
1,t r2

2,t )(2 mπ)3
1
bt

K1(2 mπ bt) (4.35)

→ π α2
S

N2
c − 1
4 N2

c

( r2
1,t r2

2,t )(2 mπ)3

×
√

π

4 mπ b3
t

e−2 mπ bt , (4.36)

where (4.36) gives the asymptotic behaviour at large bt
(bt � 1/(2 mπ)). Namely, this is the expression we will
use for the estimates of the value of b0 in this case. Sub-
stituting (4.36) into (2.15) and (3.27) we find the solution
to (4.31), namely

bexp
0 (x) =

1
2 mπ

ln
(

π α2
S

N2
c − 1
4 N2

c

( r2
1,t r2

2,t )(2 mπ)3

×
√

π

4 mπ b3,exp
0 (x)

xG(x, r2
1,t, r

2
2,t)

)
; (4.37)

(4.37) is still an equation for bexp
0 which has the asymptotic

solution at low x:

bexp
0 (x) =

1
2 mπ

ln
(

π α2
S

N2
c − 1
4 N2

c

( r2
1,t r2

2,t ) (2 mπ)4

×
√

π

2
xG(x, r2

1,t, r
2
2,t)
)

. (4.38)

2 The integral is
∫ ∞
2 mπ

zK0(z)dz = K1(2 mπ). This fol-
lows directly from the differential equation for K0, namely
d
dz

(zK0(z)) = −zK0(z) which should be integrated over z.
Recalling that − d

dz
K0(z) = K1(z) we obtain the above inte-

gral. The alternative way is to use a combination of 6.561(8)
and 6.561(16) from [39]
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Fig. 4. Energy behaviour of b0(x) (Q2 = 4/r2
t )

One can see two important differences between this
case and the case that we have considered previously:
(1) b0 of (4.38) grows only logarithmically as a function of
energy. From (3.20) we conclude that bexp

0 ∝ √
ln(1/x);

(2) the second term in (4.29) gives a small contribution
which does not depend on energy.

Therefore, in this kinematic region the unitarity bound
has the form

σdipole−dipole
tot < 2π ( bexp

0 (x) )2 , (4.39)

with bexp
0 from (4.38).

This equation reproduces the classical Froissart result
[28], namely, the fact that the total cross section can in-
crease only logarithmically. This is the kind of energy be-
haviour we expect for DIS or hadron–hadron collisions.
However, we would like to draw attention to the fact that
we obtain

σdipole−dipole
tot ≤ 2π

(2 mπ)2
ln(1/x) ; (4.40)

while the unitarity bound for the hadron–hadron cross sec-
tion has ln2 s behaviour (σhadron−hadron

tot ≤ 2π
(2 mπ)2 ln2 s ).

It is worthwhile mentioning that (4.40) holds in the
wide range of the photon virtualities which we will define
below.

4.3.Predictions

Comparing (4.33) and (4.39), one can see that in a wide
range of energies where b0(x) ≤ 1/2 mπ the photon–
photon scattering shows an exponential (∝ e

√
a ln(1/x))

behaviour as a function of ln(1/x), in striking contradic-
tion with the DIS and/or hadronic processes. However,
for higher energies bexp

0 (x) reaches the value of 1/2 mπ or
1/mglueball. For higher energies the unitarity bound be-
comes the one of (4.39). The numerical evaluation shown
in Fig. 4 illustrates the fact that the kinematic region of an

exponential increase is wide, especially if we believe that
the non-perturbative corrections will only appear at small
masses in the t-channel. Therefore, we find that γ∗–γ∗
scattering shows a quite different behaviour than DIS and
hadronic processes at all accessible energies (see Fig. 4).
However, if the typical mass in the t-channel is rather
the mass of a glueball [42] the non-perturbative correc-
tions will stop the exponential increase as e

√
a ln(1/x) at

x ≈ 10−5.
It is interesting to notice that the value of b0(x) turns

out to be larger at a larger value of Q2 in the region of low
x. The reason for such a behaviour is the fast increase of
the gluon density at larger values of Q2, which prevails the
suppression due to the extra factor 1/Q in (4.32). From
Fig. 4 one can see that b0(Q2 = 20 GeV2) < b0(Q2 =
40 GeV2) at x ≤ 10−7.

5 Total γ∗–γ∗ for accessible energies

Using the master formula of (1.1) with the dipole–dipole
cross section given by (4.28) we calculate the γ∗–γ∗ to-
tal cross sections at the accessible range of energies. The
results of the calculations are presented in Fig. 5. We fix
the virtuality of one of the photons at Q2

2 = 4 GeV2 and
calculate the cross section at different values of Q2

1. It is
essential to recall that we discuss γ∗–γ∗ scattering in the
DGLAP dynamics and we have to fix large values for the
virtualities of both photons. Q2

2 = 4 GeV2 corresponds to
r2,t ≈ 0.2 fm, which is smaller than the electromagnetic
radius of the pion (Rπ = 0.66 fm). Therefore, we can apply
perturbative QCD to our process.

In Fig. 7 we also show the experimental data for the
γ∗–γ process since there is no experimental information
about the values of the cross sections for γ∗–γ∗ scattering
for large but different photon virtualities. However, the
main dependence of the cross section is on the largest
virtualities and we can hope that the data on the γ∗–γ
reaction is not very different from the γ∗–γ∗ one.

One can see from Fig. 7 that our predictions are not
in contradiction with the available but poor experimen-
tal data. We see in Fig. 7 that data with one real photon
overshoot our predictions. Actually, there are more data
on the γ∗–γ reaction, but they are presented in the form
of the photon structure function. We do not want to recal-
culate the cross section using these data since we, being
theorists, are not entitled to put experimental errors for
these reconstructed data. We would like to mention once
more that this comparison with experiment could be con-
sidered only as an illustrative one showing that we obtain
a reasonable estimate for the value of the cross sections.
The fact that the data with large but equal virtualities are
less than our prediction is understandable, since in our ap-
proach the cross sections for such processes do not have an
extra enhancement due to the gluon structure function.

Therefore, we can view Fig. 7 as an argument that our
predictions do not contradict the current experimental
data and as the reason for our expectations that future
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Fig. 5. Energy behaviour of the total γ∗–γ∗ cross section

Q

Q 2

1
γ∗ γ∗

γ∗ γ∗
Fig. 6. The picture of the interaction of two photons with
virtualities Q1 and Q2 due to quark–antiquark pair exchange
(the so-called “box” diagram)

experiments will provide us with data which we will be
able to compare with our predictions.

It should be mentioned that for serious comparison
with the experimental data we have to calculate the power-
like corrections to the high energy behaviour discussed
in this paper. These corrections are calculable for γ∗–γ∗
scattering and they can be described as the exchange of a
quark–antiquark pair in the t-channel (the so-called “box”
diagram of Fig. 6) [41]. The simple “box” diagram with-
out gluon emission falls as 1/W 2, where W is the energy
of the γ∗–γ∗ scattering. However, gluon emission slows
down this decrease and, therefore, such corrections could
be important at sufficiently high energies.

It is instructive also to compare the realistic calcula-
tion with the unitarity bound (see Fig. 8). To calculate the
unitarity bound we use (1.1) where we substitute∫

d2 bt σdd
a,b(x, r2

1,t, r
2
2,t; bt)

= 2π
(
2 b2

0(x) + r2
2,t(z2 z̄2)

)
. (5.41)

One can see that the unitarity bound considerably
overestimates the value of the cross section.

6 Summary

We can summarize our approach in the following way. The
kinematic region which we study in this paper is the high

Fig. 7. Energy behaviour of the total γ∗–γ∗ cross section for
low energies and experimental data. Squares denote the L3
data [35], while the triangles mark the OPAL data [36]. Circles
label data taken from [37]

Fig. 8. Energy behaviour of the total γ∗–γ∗ cross section (solid
line) and unitarity bound (dotted line)

density QCD region. In this region we have the system of
partons at short distances at which αS is small, but the
density of partons has become so large that we cannot ap-
ply the usual methods of pQCD. An important method to
deal with hdQCD is the Glauber–Mueller approach, which
gives the simplest approximation for the high parton den-
sity effects. Developing the Glauber–Mueller approach, we
obtained the following results.
(1) Both DGLAP and BFKL equations are linear evolu-
tion equations predicting a steep growth of the cross sec-
tions as a function of energy. However, it is believed that
unitarity holds for all physical processes. At high energies
it manifests itself as a suppression of the growth of the
cross section. At the saturation scale Qs(x) non-linear ef-
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Fig. 9. Estimate of the saturation radius where the transition
occurs from low density to high parton density regime. Solution
given as dependence of r2

saturation on log10(1/x) for fixed values
of Q2

2

fects set in. These effects are due to formation of a high
density parton system.
(2) In this paper for the first time the Glauber–Mueller ap-
proach has been developed for the case of virtual photon–
photon scattering. This allows us to estimate the satura-
tion scale where the transition occurs from the low density
to the high parton density regime. The estimate is made
from the equation (r1 > r2)

Ω(b = 0, r1,saturation, r2)/2 = 1 . (6.42)

The solution of this equation is shown in Fig. 9.
The solution to (6.42) is proportional to r2

1,saturation ∝
r2
2,t
(
xG(x, r2

1,saturation, r2
2,t)
)−1.

It is not surprising that the value of r1,saturation de-
creases as a function of Q2 as one can see in Fig. 9. At
first sight it looks strange that the value of the satura-
tion scale Q2

s = 4/r2
saturation is rather large. Indeed, for

x = 103 and Q2
2 = 4 GeV2 the value of Q2

s ≈ 70 GeV2

is much larger than expected, Q2
s ≈ 1–2 GeV2 for the

proton.
To understand this difference we take the parameteri-

zation of the gluon structure function for the proton
in the form of (3.20), namely xG(x, Q2) =
G0I0(2

√
ξ(2/Q, Rp) ln(1/x)) [40]. Rp is the proton radius

which in this estimate we can take R2 = 10 GeV−2. G0 is
equal 0.136. One can obtain

Q2
s (γ

∗ − γ∗)
Q2

s(γ∗ − proton)
∝ Q2

2 R2
p(1/G0) ≈ 70 .

Therefore, we claim that the large value of the satu-
ration momentum is one of the interesting features of the
γ∗–γ∗ scattering at high energy.
(3) We note that the gluon interaction leads to a power-
like decrease of the opacity (Ω) in Glauber–Mueller for-
mula as a function of the impact parameter (b), namely

Ω ∝ 1/b4
t . It turns out that because of this behaviour the

γ∗–γ∗ cross section has a wide range of energy where it
increases faster than any power of ln(1/x), in remarkable
contradiction with hadron–hadron and deep inelastic cross
sections, which can have only ln2 W growth with energy
[28]. This fast increase of the γ∗–γ∗ cross section contin-
ues up to energies at which the typical impact parameter
(b0(x)) will reach the value of 1/2 mπ (b0 = 1/2 mπ; see
Fig. 4).

(4) The influence of this power-like bt behaviour on the
unitarity bound is studied. This bound is calculated to
give an estimate for the energy behaviour of the cross
section.

(5) It is shown that non-perturbative contributions are
needed even for the case of photon–photon scattering with
large virtualities of both photons in order to describe the
large bt behaviour of the dipole–dipole scattering ampli-
tude.

(6) We found that the unitarity bound for the dipole–
dipole cross section for very high energies is σ(γ∗–γ∗) ≤

2π
(2 mπ)2 ln(1/x). This result can be translated in the uni-
tarity bound for the γ∗–γ∗ cross section after integration
over r1,t and r2,t in (1.1).

For Q2
2 � Q2

1 ≤ Q2
1,sat = 4/r2

1,saturation we obtain

σT,T(γ∗ − γ∗) ≤
∑
a,b

(
4αem

π

)2

Z2
a Z2

b

× ln(Q2
1,sat/Q2

1) ln(Q2
1,sat/Q2

2)
(

2π

(2 mπ)2

)
ln(1/x) ;

σT,L(γ∗ − γ∗) ≤
∑
a,b

(
4αem

π

) (
6αem

π

)
Z2

a Z2
b

× ln(Q2
1,sat/Q2

1)
(

2π

(2 mπ)2

)
ln(1/x) ;

σL,T(γ∗ − γ∗) ≤
∑
a,b

(
4αem

π

) (
6αem

π

)
Z2

a Z2
b

× ln(Q2
1,sat/Q2

2)
(

2π

(2 mπ)2

)
ln(1/x) ;

σL,L(γ∗ − γ∗) ≤
∑
a,b

(
6αem

π

)2

Z2
a Z2

b

×
(

2π

(2 mπ)2

)
ln(1/x) . (6.43)

In (6.43) for the transverse polarized photon we used
the logarithmic approximation in the integral over rt. In-
deed, |ΨT|2 ∝ 1/r2

t and it should be integrated from
4/Q2

sat to 4/Q2. Taking into account that Q2
sat ∝ xG ∝

e2
√

ξ(r1,t,r2,t) ln(1/x) (see (3.21)) one can see that

σT,T(γ∗ − γ∗) ≤ CT,T

(2 mπ)2
ln2(1/x) ; (6.44)

σT,L(γ∗ − γ∗) ≤ CT,L

(2 mπ)2
ln

3
2 (1/x) ; (6.45)
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σL,L(γ∗ − γ∗) ≤ CL,L

(2 mπ)2
ln2(1/x) . (6.46)

Therefore, only σT,T has the same energy dependence
of the unitarity bound as the hadron–hadron cross section.
(7) Our approach shows that the non-perturbative correc-
tions at large bt should be taken into account in the Born
cross section. Another way to treat this result is to say
that the non-perturbative corrections can be taken into
account only in the initial conditions as was discussed in
[29,30]. We do not see that such corrections are needed in
the kernel of the non-linear evolution equation [38] as was
argued in [21–24].

The estimates of at what energies such corrections will
enter the game are presented and discussed.
(8) Numerical calculations are performed for the values of
the total cross section for accessible energies and virtu-
alities. These predictions will be checked soon with new
coming data.

We hope that this paper will stimulate further experi-
mental study of γ∗–γ∗ processes, which can give very con-
clusive information on the saturation kinematic region in
QCD.
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